"Recycling von Bauwerken" - Baustein D

Prüfung

23.07.10, 9:00 – 11:00 Uhr, Raum 113, C 7				
Name	Vorname	Matrikelnummer		
Durch Unterschrift wird fol	gendes zur Kenntnis genon	 nmen:		
	eht ohne gesundheitliche Eins			
	ahl ist nur dann zulässig, wen Studenten auf der Aufgaben:	n diese bei der Abgabe durch die stellung registriert wird.		
Unterschrift:				
(Student)				
Die Klausur besteht aus 13 A	aufgaben mit insgesamt 100 F	Punkten.		
Dio Madda Doctorit ado 107	angason mic mogosamic roo r	dilike.ii		
Anzahl der abgegebenen Blä	ttor:			
Alizani dei abgegebenen bia	(ter			
Punkte:				
i dilitto.				
Note:				

"Abbruch und Rückbau" – Baustein C / "Recyclinganlagen" – Baustein E,

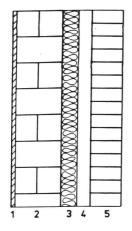
Aufgabe $1 \rightarrow 3$ Punkte

Unterschrift: (Korrigierender)

Nennen Sie drei Schadstoffarten, die im Hochbau vorgefunden werden können. In welchen Funktionen wurden sie eingesetzt? An welchen Standorten werden häufig Schadstoffe gefunden?

Aufgabe 2 → 16 Punkte

Nach Abbruch eines Gebäudes liegt die gesamte Wandkonstruktion als gemischter mineralischer Bauschutt vor.


Berechnen Sie anhand des Wandaufbaus die Massenanteile der einzelnen Materialien!

Bestimmen Sie den SO₃ - Gehalt im betrachteten Bauschutt!

Ordnen Sie den Bauschutt dem entsprechenden Typ nach DIN 4226-100 "Rezyklierte Gesteinskörnungen" zu!

Außenwandkonstruktion: Mehrschalige Betonkonstruktion mit Kerndämmung

Halbhydratanteil im Putz = 50 M%

Gipssinnenputz(Halbhydrat)
Betonsteinmauerwerk
Hartschaum
Luftschicht
Vormauerschale (Klinker)

Molmassen:

H - 1g/mol O - 16 g/mol Ca - 40 g/mol S - 32 g/mol

		Rohdichte [kg/m³]	Schichtdicke [mm]	Flächenbezogene Masse [kg/m²]	Anteil [M%]
1	Gipsinnenputz	1200	15		
2	Betonsteinmauerwerk	1800	240		
3	Hartschaum	50	60		
4	Luftschicht		50		
5	Vorm. (Klinker)	1400	115		
				Σ=	
	SO ₃ - Gehalt				

Anforderungen nach DIN 4226-100, Rezyklierte Gesteinskörnungen

Gips stellt Schad- und Störstoff dar: SO₃-Gehalt < 1 M.-%

	Typ 1	Typ 2	Тур 3	Typ 4
	Betonsplitt/	Bauwerksplitt/	Mauerwerk-	Mischsplitt/
	Beton-	Bauwerk-	splitt/Mauer-	Mischbrech-
	brechsand	brechsand	werkbrechsand	sand
Bestandteile		[Mas	se-%]	
Beton und Gesteins-				
körnungen nach DIN	≥ 90	≥ 70	≤ 20	
4226-1				
Klinker, nicht poro-				≥ 80
sierter Ziegel	≤ 10	≤ 30	≥ 80	
Kalksandstein			≤ 5	
Andere mineralische				
Beimengungen	≤ 2	≤ 3	≤ 5	≤ 20
Asphalt	≤ 1	≤ 1	≤ 1	
Fremdbestandteile	≤ 0,2	≤ 0,5	≤ 0,5	≤ 1
Kornrohdichte	[kg/m ³]			
	≥ 2000	≥ 2000	≥ 1800	≥ 1500

Aufgabe 3 → 10 Punkte

Für einen kontrollierten Rückbau ist die Planung der benötigten Container vorzunehmen. Markieren Sie in der Tabelle, welche Bauabfallarten in den gleichen Containern abgelegt werden können. Wie viele 10 m³-Container werden für die jeweiligen Bauabfallarten benötigt.

Lfd.		Masse	Lagerungs-	
Nummer	Bauteil	[t]	dichte [t/m³]	
1.	Parkett, lackiert	3,2	0,15	
2.	PVC, vollflächig verklebt	1,8	0,30	
3.	Teppich vollflächig verklebt	0,2	0,30	
4.	Bitumenschichten auf dem Dach	22,0	0,30	
5.	Diverse Aluminiumrahmen	6,0	0,15	
6.	Stahltür	0,2	0,20	
7.	Zargen der Stahltür	0,7	0,20	
8.	Fensterleibung (Stahl)	2,1	0,20	
9.	Toilettentrennwände (PVC)	2,0	0,15	
10.	Holztüren	2,0	0,15	
11.	Zargen (Holz)	1,3	0,15	
12.	Holzvertäfelung (Wand)	4,0	0,15	
13.	Betontreppe	55,0	1,2	
14.	Treppenbeläge Kunststoff	2,0	0,30	
15.	Holzvertäfelung (Decke)	84,0	0,15	
16.	Treppengeländer (Holz)	0,5	0,15	

Aufgabe 4 → 5 Punkte

Für die Auswahl eines geeigneten Brechers ist neben der Kenntnis von stofflichen Eigenschaften (z. B. Härte) auch die geometrische Form des Aufgabegutes entscheidend.

Ordnen Sie mit einem Kreuz (x) den in der Tabelle genannten Abbruchmaterialien geeignete Brecher zur Grobzerkleinerung zu! (mehrfache Nennung möglich)

	Backenbrecher	Prallbrecher	Schredder	Hammerbrecher
Betonabbruch				
Beton-Eisenbahn- schwellen				
Abbruchziegel				
Altholz				
Gipskartonplatten				

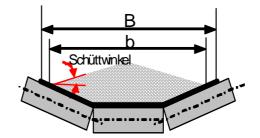
Aufgabe $5 \rightarrow 6$ Punkte

Im Rahmen der Sanierung ist ein ungenutztes älteres Fabrikationsgebäude abzubrechen. Das Aufmass des mehrstöckigen Gebäudes ergab einen Bruttorauminhalt von 2500 m³. Für Produktionsbauten dieser Art ist beim Abriss mit einem Aufkommen an mineralischem Bauschutt von 275 kg / m³ Bruttorauminhalt zu rechnen.

- Wie viel Tonnen mineralischen Bauschutts werden beim Abbruch anfallen?
- Wie viele LKW-Fuhren (Ladekapazität: 16 m³) müssen für den Abtransport des mineralischen Bauschutts kalkuliert werden, wenn die Schüttdichte dieses Transportgutes mit etwa ρ = 0,5 t/m³ angenommen wird?

Aufgabe 6 → 12 Punkte

Wie viel Tonnen t Asphaltaufbruch können pro Stunde mit einem 60 cm breiten Gurtförderer transportiert werden, wenn die Neigung des Förderers n=16° und die Transportgeschwindigkeit v = 5m/s betragen?


Gurtbelegung: 90% der Gurtbreite

Füllquerschnitt (geometrisch) $A = b^2 *[0.06+0.2025* tan (Schüttwinkel)]$

Volumenstrom: V = v * A * k

	Schütt- dichte	Schütt- winkel	Max. Neigung
	[t/m³]		
Asphalt, gebrochen	0,7	15 °	18°
Beton, nass	1,8-2,4	0-5°	16-22°
Erde, feucht	1,5-1,9	15-20°	18-20°
Glasbruch	1,3-1,6		12-15°
Sand, nass	1,4-1,9	15 °	20-25°

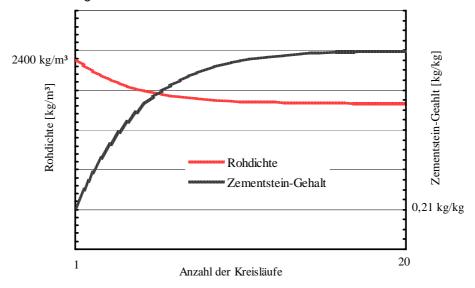
Neigung	Faktor k	
0 °	1	
10 °	0,98	
16 °	0,92	
20 °	0,86	
24 °	0,76	

Aufgabe 7 → 6 Punkte

Wie groß muss das Einzugsgebiet einer Bauschuttrecyclinganlage sein, damit diese mit einer Kapazität von 200.000 t/a ausgelastet betrieben werden kann?

Die Einwohnerdichte des Einzuggebietes beträgt 150 E/km², das spezifische Bauschuttaufkommen ist mit 750 kg/Ea angegeben.

Werten sie den Transportaufwand des Bauschuttes, wenn man von einem kreisrunden Einzugsgebiet, mit einer mittig angeordneten Recyclinganlage ausgeht!


Aufgabe $8 \rightarrow 5$ Punkte

Gegeben sind die Komponenten einer einfachen Aufbereitungsanlage zur Herstellung von Straßenschotter. Fügen Sie die Komponenten in der richtigen Reihenfolge mit Hilfe von Pfeilen zu einem schematischen Fließbild zusammen!

Brecher	Vorabsiebung	Magnetscheider	Vorabsiebmaterial
Aufgabem	aterial RC-Baus	toff Produktsiebun	g Brecherrücklauf

Aufgabe 9 → 5 Punkte

Das Bild zeigt die Veränderungen bei einem fiktiven Mehrfachrecycling von Beton. Welche Grenzwerte stellen sich bei einer hohen Zahl von Recyclingzyklen ein? Schätzen Sie die Werte anhand der Skizze und erläutern Sie ihre Bedeutung.

Aufgabe $10 \rightarrow 12$ Punkte

Um wie viel Prozent verringert sich die theoretische Trockenrohdichte eines Betons gegenüber dem Ausgangsbeton, wenn 25 Vol-% des Zuschlages durch Ziegelsplitt ersetzt werden? Der Ausgangsbeton soll Rheinkies (ρ_g = 2,62 kg/dm³) enthalten und mit einem w/z-Wert von 0,45 hergestellt werden. Die Rohdichte des Ziegelsplitts beträgt 1,7 kg/dm³. In beiden Betonen sollen 360 kg/m³ CEM I 42,5 R (ρ_z = 3,1 kg/dm³) enthalten sein. Der Luftporengehalt wird mit 20 dm³/m³ angenommen.

Stoffraumrechnung:
$$1000 = g/\rho_g + z/\rho_z + w/\rho_w + v_p$$

Theoretische Trockenrohdichte: $\rho_{tr} = 1,2z + g$

Aufgabe 11 → 8 Punkte

Der Chloridgehalt eines Betonstrassenaufbruchs beträgt 0,05 Masse-%.

Bei der Elution nach dem DEV-S4-Verfahren geht das gesamte Chlorid in Lösung. Berechnen Sie die Konzentration, die sich einstellt und ordnen Sie das Material einer der in den technischen Regeln der LAGA genannten Zuordnungsklassen zu.

Beim DEV-S4-Verfahren werden 100 g Bauschutt mit 1000 g H₂O eluiert. Für die Zuordnungswerte gilt:

	Z 0	Z 1.1	Z1.2	Z 2
Chlorid [mg/l]	≤ 10	≤ 20	≤ 40	≤ 150

Woher könnte das Chlorid in dem Betonaufbruch stammen?

Aufgabe 12 → 6 Punkte

Gegeben sind die Rohdichten von Abbruchmaterialien:

 $2,4\ t/m^3$; $0,5\ t/m^3$; $0,5\ t/m^3$; $1,8\ t/m^3$; $6,9\ t/m^3$; $0,95\ t/m^3$ Ordnen Sie diese Rohdichten den Abbruchmaterialien in der Tabelle zu!

Abbruchmaterial	Rohdichte [t/m³]
Eisenträger	
Deckenbalken (Holz)	
Mauerwerkbruch	
Porenbetonbruch	
Gipskartonplattenbruch	
Betonstraßenaufbruch	

Aufgabe $13 \rightarrow 6$ Punkte

Nennen Sie, aus betontechnologischer Sicht, 3 maßgebliche Unterschiede von natürlichen Gesteinskörnungen und rezyklierten Gesteinskörnungen! Beschreiben Sie wie bei Verwendung von Rezyklaten die Betoneigenschaften beeinflusst bzw. verändert werden!