

SeRaMCo Secondary Raw Materials for Concrete Precast Products

Bericht zum EU-Forschungsprojekt

Kasem Maryamh, M. Sc.

Inhalt

- 1. Ziele des Programms (Interreg NWE)
- 2. Einführung
- 3. Ziele des Projekts
- 4. Überblick & Projektidee
- 5. Arbeitspakete & Zwischenergebnisse
- 6. Fazit

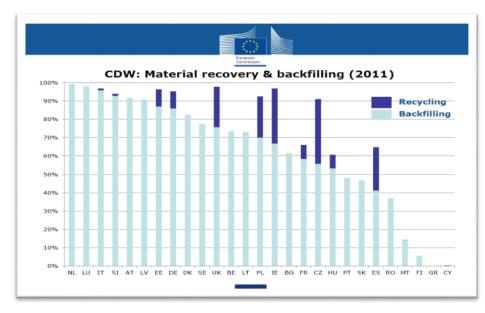
1 Ziele des Programms (Interreg NWE)

Die Innovationsleistung der Unternehmen im NWE-Programmraum verbessern

Kohlenstoffarme Wirtschaft

- Implementierung von kohlenstoffarmen Energie- und Klimaschutzstrategien
- Einführung kohlenstoffarmer Technologien, Produkte, Verfahren und Dienstleistungen in Sektoren mit hohem Energiesparpotenzial
- Umsetzung von länderübergreifenden kohlenstoffarmen Lösungen in Verkehrssystemen

Ressourcen- und Materialeffizienz


Optimierung der (Wieder-)Verwendung von Materialien und natürlichen Ressourcen

2 Einführung

- **EU-Bausektor** benötigt ca. 50% der Primärrohstoffe und produziert 1/3 aller Abfälle
- In Bauabfällen enthaltener Beton, Mauerwerk, Dachziegel und Keramik (CBTC) können als rezyklierte Gesteinskörnungen sehr gut wiederverwendet werden

Quelle: http://ec.europa.eu/environment/waste/construction_demolition.htm

- CBTC werden überwiegend als Verfüllmaterialien im Tiefbau verwendet
- Obwohl 70% CBTC in DE, BE, FR, NL und LU wiederverwendet werden, werden nur 4% im Sinne der Kreislaufwirtschaft der eigentlichen Betonherstellung zugeführt

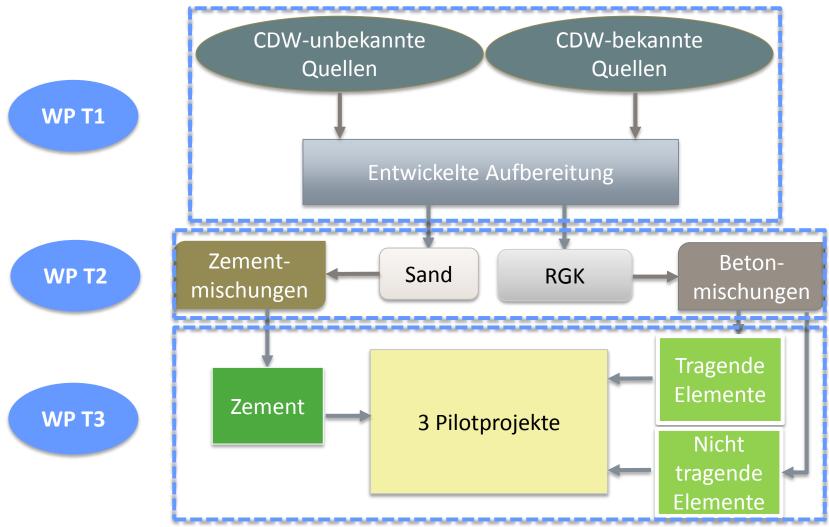
3 Ziele des Projekts

- Erhöhung der Verwendung von Bauabfällen (hauptsächlich CBTC) in NWE als Sekundärrohstoffe für Zement- und Betonherstellung
- Entwicklung neuer Prozesse zur hochwertigen Aufbereitung ",High Quality Recycling"
- Entwicklung neuer Zement- und Betonmischungen
- Herstellung von innovativen Betonfertigteilen aus rezyklierten Gesteinskörnungen und Vorbereitung auf deren Kommerzialisierung und Marktdurchdringung
- Information der Stakeholder über die Methoden und die Produkte, die in dem Projekt entwickelt werden
- Umsetzung von drei Pilotprojekten am Ende des Projekts

4 Überblick & Projektidee

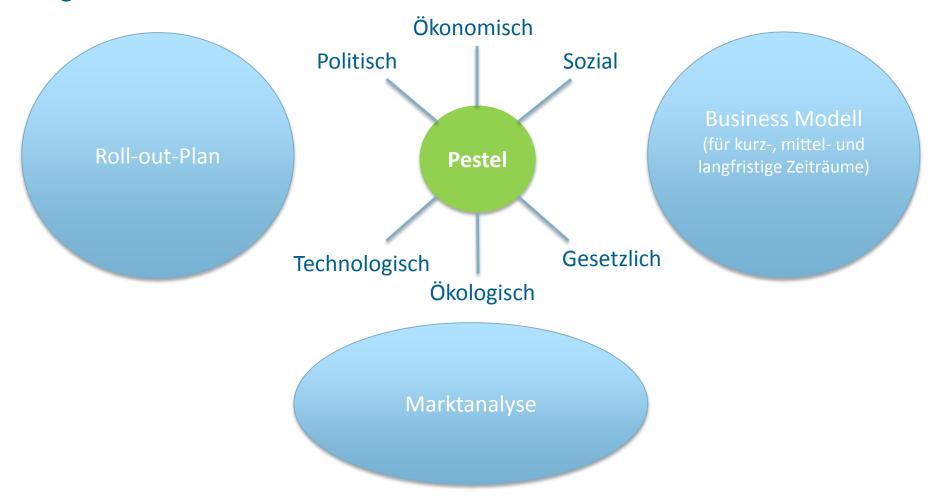
Partnerschaft

- 17 Partner aus 5 EU Ländern (DE, FR, NE, BE, LU)
- 11 Partner, 3 Sub-Partner, 3 Associated Partner



Chaux de Contern

4 Überblick & Projektidee


5 Arbeitspakete & Zwischenergebnisse Übersicht

- 1. Long Term
- 2. Kommunikation
- 3. Projektmanagement
- WP T1: Bester Prozess zur Materialbehandlung
- 5. WP T2: Entwicklung neuer Zement- und Betonmischungen zur Verwendung von rezyklierten Materialien
- WP T3: Herstellung und Einsatz innovativer Zement- und Betonprodukte auf Basis von rezyklierten Gesteinskörnungen
- 7. Pilot 1: Umsetzungsbeispiel in Seraing (BE)
- 8. Pilot 2: Umsetzungsbeispiel in Saarlouis (DE)
- Pilot 3: Umsetzungsbeispiel in Moselle (FR)

5 Arbeitspakete & Zwischenergebnisse **Long Term**

5 Arbeitspakete & Zwischenergebnisse Kommunikation

Detaillierter Kommunikationsplan

Digitale Aktivitäten (Webseite, Social Media, Newsletter)

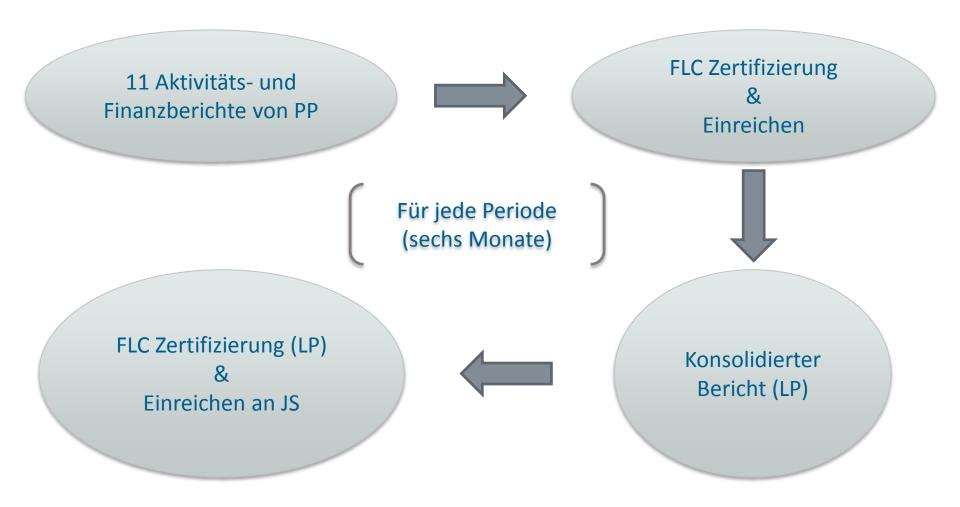
Werbematerial-Paket (Broschüre und Poster)

Öffentliche Events

Dokumentarvideos, Publikationen

5 Arbeitspakete & Zwischenergebnisse Kommunikation

SeRaMCo Mid-term Conference an der Universität Luxemburg


28.+29.11.2018

5 Arbeitspakete & Zwischenergebnisse **Projektmanagement**

1. Aufnahme der Abfälle

2. Lagerung

3. Erstbearbeitung

4. Mechanischer Grinder

8. Mechanischer Grinder

7. Manuelle Trennung

6. Magnetische Klassifizierung

5. Primärzerkleinerung

9. Recycelte Materialien verschiedener Maximalgrößen

Recyclingprozess von Bauabfälle (Quelle: Medina et al., 2015)

Trocken- und Nassprozess

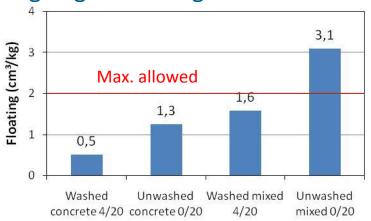
Auswirkungen des Waschens auf die Gesteinskörnungen:

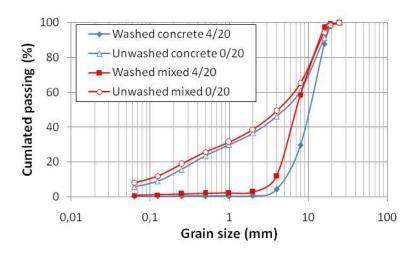
- Verringerung des Feininhalts
- Verringerung der Mengen von unerwünschten Komponenten (schwimmende Körper, Lehm, Gips, etc.)
- Beschränkung der Korngrößenverteilung
- Erhöhung des Widerstands gegen Fragmentierung

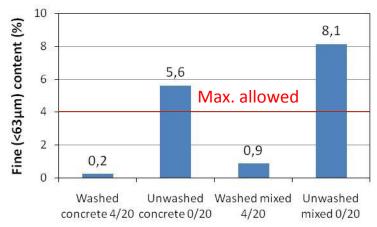
Gewaschene Gesteinskörnungen (Tradecowall)

Recyclingprozess bei Tradecowall-Belgien

Rezyklierte Gesteinskörnungen von Beton


Rezyklierte Gesteinskörnungen (gemischt)





Zwischenergebnisse Uni Liege & Tradecowall

- Korngrößen beim Nassprozess eingeschränkt
- **Feine Komponenten** (< 63μm) werden auf geeignete Mengen reduziert
- **Schwimmende Elemente** werden auf geeignete Mengen reduziert

5 Arbeitspakete & Zwischenergebnisse WP T2: Entwicklung neuer Zement- und Betonmischungen

Zementmischungen

Laborexperimente der Projektpartner Universität Lorraine und VICAT zeigen:


- Rezyklierte Gesteinskörnungen beinhalten hauptsächlich Calcit und Quarz in unterschiedlichen Proportionen
- Großer Gehalt von Silica, Magnesium, Sulfat und Alkalien kann die Beimischungsquote begrenzen
- Gemischte rezyklierte Gesteinskörnungen sind schwieriger einzubringen
- Maximale erreichbare Beimischungsquote 10-20%
- Proportionen sind abhängig von rezyklierten Gesteinskörnungen, Steinbruchanlagen und Typ des zu produzierenden Zements

5 Arbeitspakete & Zwischenergebnisse WP T2: Entwicklung neuer Zement- und Betonmischungen

Herstellung von 3000 t von zwei unterschielichen Zementarten bei VICAT mit einem Beimischungsanteil von 15% (CEM I 52,5 & CEM II 42,5)

5 Arbeitspakete & Zwischenergebnisse

WP T2: Entwicklung neuer Zement- und Betonmischungen

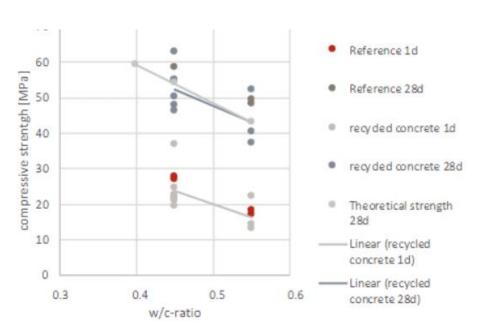
Betonmischungen

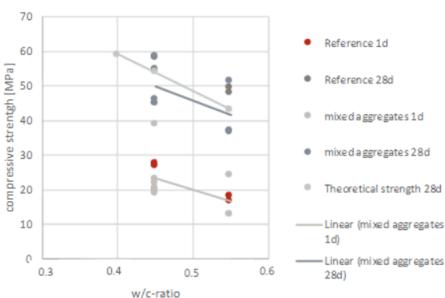
Versuche am Fachgebiet Werkstoffe im Bauwesen, TU Kaiserslautern Verwendete Materialien:

- CEM I 42,5 & Natursand 0/2 mm
- Rezyklierte Gesteinskörnungen: gemischte rezyklierte Gesteinskörnungen und zerkleinerter Beton

Test Matrix

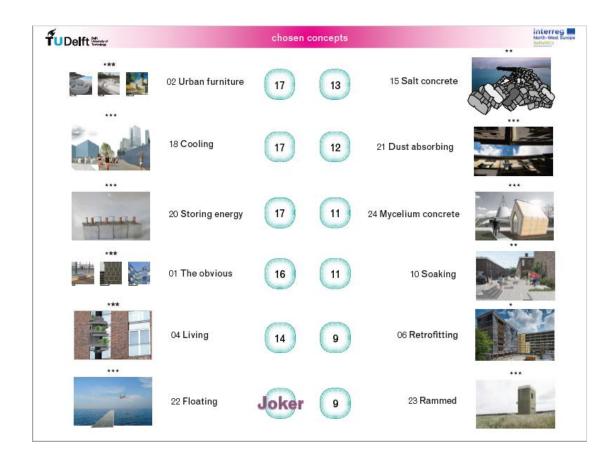
Parameter	Variation
W/C Verhältnis	0,45;0,55
Gesteinskörnungen	Natürliche Gesteinskörnungen; Zerkleinerter Beton; Gemischte Gesteinskörnungen
Anteil der rezyklierten Gesteinskörnungen	<u>100%</u> ; 75%; 50%; 25%



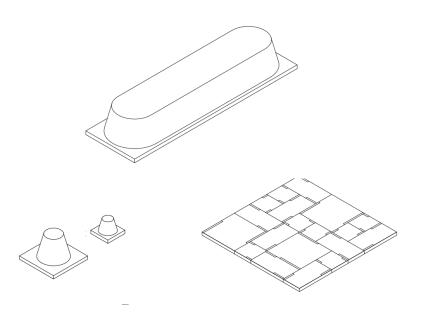

5 Arbeitspakete & Zwischenergebnisse WP T2: Entwicklung neuer Zement- und Betonmischungen

Betonmischungen

Druckfestigkeit der Proben von zerkleinertem Beton

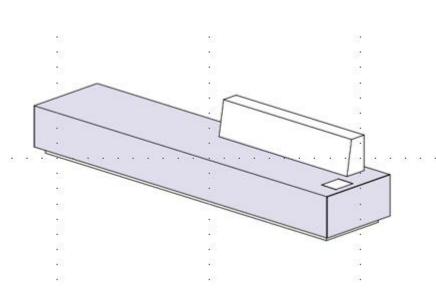

Druckfestigkeit der Proben von gemischten rezyklierten Gesteinskörnungen

Entwicklung neuer Produkte, u.a. zur Umsetzung in Pilotprojekten (TU Delft)



Entwicklung neuer Produkte, u.a. zur Umsetzung in Pilotprojekten (TU Delft)

Urban elements & L-Walls



Entwicklung neuer Produkte, u.a. zur Umsetzung in Pilotprojekten (TU Delft)

Energy Bench & Bee Haves

Entwicklung neuer Produkte, u.a. zur Umsetzung in Pilotprojekten (TU Delft)

Exterior walls & facade

SeRaMCo-Team beim Betonfertigteile-Hersteller (PREFER-Belgien)

6 Fazit

- Internationale Zusammenarbeit bringt Team zusammen und fördert neue kreative Ideen
- Aufbereitungsprozesse für Sekundärrohstoffe auf hohem Niveau
- Nutzung Sekundärrohstoffe für Zement- und Betonherstellung gut möglich
- Recyclingbeton ist für Fertigteilprodukte gut geeignet
- Hemmnisse für breite Marktanwendung liegen in günstigen Rohstoffpreisen und Rahmensetzung der öffentlichen Hand
- **Einbindung möglichst vieler Stakeholders**, Recycling-Unternehmen, nationale und internationale Firmen für Betonherstellung, Ministerien und Bildungszentren im Sinne verstärkten Anwendung von Recyclingbeton
- Umsetzung der Pilotprojekte mit möglichst interessanten, innovativen Produkten wird öffentliche Aufmerksamkeit erhöhen

Secondary Raw Materials for Concrete Precast Products

Vielen Dank für Ihre Aufmerksamkeit!

SeRaMCo Webseite:

<u>www.nweurope.eu/projects/project-</u> <u>search/seramco-secondary-raw-materials-for-</u> <u>concrete-precast-products/</u>

LinkedIN:

https://www.linkedin.com/company/seramco/

Twitter:

https://twitter.com/seramconwe?lang=de

SeRaMCo Magazin:

https://seramco.h5mag.com/seramco/cover

Ihr Ansprechpartner:

Kasem Maryamh, M. Sc. Paul-Ehrlich-Straße 14 67663 Kaiserslautern

Tel: +49 631 205-3109

E-Mail: Kasem.maryamh@bauing.uni-kl.de

Quellen

- http://ec.europa.eu/environment/waste/construction_demolition.htm
- Effect of the constituents (asphalt, clay materials, floating particles and fines) of construction and demolition waste on the properties of recycled concretes, Medina et al., 2015
- SeRaMCo-Projektpartner (University of Liege, TRADECOWALL, PREFER, University of Lorraine, VICAT, TU Delft, Fachgebiet Werkstoffe im Bauwesen – TU Kaiserslautern)